References
Bertilsson, L., Wiklund, K., de Moura Tebaldi, I., Rezende, O. M., Veról, A. P., & Miguez, M. G. (2019). Urban flood resilience – A multi-criteria index to integrate flood resilience into urban planning. Journal of Hydrology, 573, 970–982. https://doi.org/10.1016/j.jhydrol.2018.06.052
Humanity Road. (2017). Hurricane Irma: Situation report 2 (TC-2017-000125-DOM) [PDF]. https://reliefweb.int/report/dominican-republic/hurricane-irma-situation-report-2-7-september-2017
Hu, S., Cheng, X., Zhou, D., & others. (2017). GIS-based flood risk assessment in suburban areas: A case study of the Fangshan District, Beijing. Natural Hazards, 87, 1525–1543. https://doi.org/10.1007/s11069-017-2828-0
Nkeki, F. N., Bello, E. I., & Agbaje, I. G. (2022). Flood risk mapping and urban infrastructural susceptibility assessment using a GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria. International Journal of Disaster Risk Reduction, 77, 103097.
NOAA National Centers for Coastal Ocean Science. (n.d.). Assessing community risk in relation to flood hazard in the U.S. Virgin Islands. https://coastalscience.noaa.gov/project/assessing-community-risk-in-relation-to-flood-hazard-in-the-u-s-virgin-islands/
NOAA National Centers for Coastal Ocean Science. (2024, December 17). Community vulnerability assessment to flood hazard in the U.S. Virgin Islands. https://coastalscience.noaa.gov (Primary contact: chloe.fleming@noaa.gov )
Qin, X., Wang, S., Meng, M., Long, H., Zhang, H., & Shi, H. (2025). Enhancing urban resilience through machine learning-supported flood risk assessment: Integrating flood susceptibility with building function vulnerability. npj Urban Sustainability, 5(1), 19.
Seydi, S. T., Kanani-Sadat, Y., Hasanlou, M., Sahraei, R., Chanussot, J., & Amani, M. (2022). Comparison of machine learning algorithms for flood susceptibility mapping. Remote Sensing, 15(1), 192.